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In an effort to exploit the favorable stability properties of implicit methods and thereby 
increase computational efficiency by taking large time steps, an implicit finite-difference 
method for the multidimensional NavierStokes equations is presented. The method 
consists of a generalized implicit scheme which has been linearized by Taylor expansion 
about the solution at the known time level to produce a set of coupled linear difference 
equations which are valid for a given time step. To solve these difference equations, the 
Douglas-Gunn procedure for generating alternating-direction implicit (ADI) schemes 
as perturbations of fundamental implicit difference schemes is employed. The resulting 
sequence of narrow block-banded systems ca.tr be solved efficiently by standard block- 
elimination methods. The method is a one-step method, as opposed to a predictor-corrector 
method, and requires no iteration to compute the solution for a single time step. Test 
calculations are presented for a three-dimensional application to subsonic flow in a straight 
duct with rectangular cross section. Stability is demonstrated for time steps which are 
orders of magnitude larger than the maximum allowable time step for conditionally stable 
methods as determined by the well-known CFL condition. The computational effort per 
time step is discussed and is very approximately only twice that of most explicit methods. 
The accuracy of computed solutions is examined by mesh refinement and comparison 
with other analytical and experimental results. 

One of the major obstacles to the routine numerical solution of the multidimensional 
compressible Navier-Stokes equations is the large amount of computer time generally 
required, and consequently, efficient computational methods are highly desirable in 
this instance. Most previous methods for solving the compressible Navier-Stokes 
equations have been based on explicit difference schemes for the unsteady form of the 
governing equations and are subject to one or more stability restrictions on the size 
of the time step relative to the spatial mesh size. These stability limits usually corre- 
spond to the well-known Courant-Friedrichs-Lewy (CFL) condition and, in some 
schemes, to an additional stability condition arising from viscous terms. In one 
dimension, the CFL condition is fit < Ax/(1 u I + c), and the viscous stability 
condition is At Q (Ax)~/~v, where dt is the time step, Ax is the mesh size, u is velocity, 
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c is the speed of sound, and v is kinematic viscosity. These stability restrictions can 
lower computational efficiency by imposing a smaller time step than would otherwise 
be desirable. Thus, a key disadvantage of conditionally stable methods is that the 
maximum time step is fixed by the spatial mesh size rather than the physical time 
dependence or the desired temporal accuracy. In contrast to most explicit methods, 
implicit methods tend to be stable for large time steps and hence offer the prospect 
of substantial increases in computational efficiency, provided of course that large time 
steps are acceptable for the physical problem of interest and that the computational 
effort per time step is competitive with that of explicit methods. In an effort to exploit 
these potentially favorable stability properties, an efficient implicit method based on 
alternating-direction differencing techniques was developed and is presented herein. 

THE PRESENT METHOD 

The present method can be briefly outlined as follows. The governing equations 
are replaced by an implicit time difference approximation, optionally a backward 
difference or Crank-Nicolson scheme. Terms involving nonlinearities at the implicit 
time level are linearized by Taylor expansion about the solution at the known time 
level, and spatial difference approximations are introduced. The result is a system of 
multidimensional coupled (but linear) difference equations for the dependent variables 
at the unknown or implicit time level. To solve these difference equations, the 
Douglas-Gunn [l] procedure for generating alternating-direction implicit (ADI) 
schemes as perturbations of fundamental implicit difference schemes is introduced. 
This technique leads to systems of coupled linear difference equations having narrow 
block-banded matrix structures which can be solved efficiently by standard block- 
elimination methods. 

The method centers around the use of a formal linearization technique adapted for 
the integration of initial-value problems. The linearization technique, which of 
necessity requires an implicit solution procedure, permits the solution of coupled 
nonlinear equations in one space dimension (to the requisite degree of accuracy) 
by a one-step noniterative scheme. Since no iteration is required to compute the 
solution for a single time step, and since only moderate effort is required for solution 
of the implicit difference equations, the method is computationally efficient; this 
efficiency is retained for multidimensional problems by using AD1 techniques. The 
method is also economical in terms of storage, in its present form requiring only two 
time levels of storage for each dependent variable. Furthermore, the AD1 technique 
reduces multidimensional problems to sequences of calculations which are one- 
dimensional in the sense that easily-solved narrow block-banded matrices associated 
with one-dimensional rows of grid points are produced. Consequently, only these 
one-dimensional problems require rapid-access storage at any given stage of the 
solution procedure, and the remaining flow variables can be saved on auxiliary 
storage devices if desired. 
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APPLICABILITY 

Although present attention is focused on the compressible Navier-Stokes equations, 
the numerical method employed is quite general and is formally derived for systems 
of governing equations which have the form 

where rj is a column vector containing 1 dependent variables, H and S are column 
vector functions of 4, and 9 is a column vector whose elements are spatial differential 
operators which may be multidimensional. The generality of (1) allows the method 
to be developed concisely and permits various extensions and modifications (e.g., 
noncartesian coordinate systems, turbulence models) to be made more or less 
routinely. It should be emphasized however, that the Jacobian aH/a$ must usually 
be nonsingular if the AD1 techniques as applied to (1) are to be valid. A necessary 
condition is that each dependent variable appear in one or more of the governing 
equations as a time derivative. An exception would occur if for instance, a variable 
having no time derivative also appeared in only one equation, so that this equation 
could be decoupled from the remaining equations and solved a posteriori by an 
alternate method. As a consequence, the present method is not directly applicable 
to the incompressible Navier-Stokes equations except in one dimension, where AD1 
techniques are unnecessary. For example, the velocity-pressure form of the incom- 
pressible equations has no time derivative of stream function. For computing steady 
solutions, however, the addition of suitable “artificial” time derivatives to the incom- 
pressible equations, as was done in Chorin’s [2] artificial compressibility method, 
would permit the application of the present method. Alternatively, a low Mach 
number solution of the compressible equations can be computed. 

For low Mach number flows, the CFL condition eventually becomes restrictive 
regardless of mesh spacing, and thus stable implicit methods are well suited for 
problems in the low Mach number regime. For all Mach numbers, both the CFL and 
viscous stability conditions eventually become restrictive for sufficiently small mesh 
spacing. Implicit methods thus become increasingly attractive when high spatial 
resolution is necessary and when locally refined meshes are used. This latter situation 
is common when more than one length scale is present, as is the case for flows which 
are largely inviscid but have thin boundary layers requiring a locally refined mesh. 
Similar statements hold for (time-averaged) turbulent flows with viscous sublayers. 

GOVERNING EQUATIONS 

The numerical method is presented for flow in three space dimensions; two- 
dimensional problems can be treated as a special case. For simplicity, it is assumed 
that the fluid is a perfect gas with zero bulk viscosity coefficient and constant molecular 
viscosity, thermal conductivity, and specific heat. The governing equations are 



SOLUTION OF NAVIER-STOKES EQUATIONS 375 

nondimensionalized by normalizing dimensional variables with the following reference 
quantities: distance, L, ; velocity, U, ; density, P,. , temperature; T, ; time, L,/U, ; 
enthalpy U,Z; and pressure, p,U,2/g, where g is the gravitational constant. This 
normalization leads to the nondimensional parameters: Mach number, M; Reynolds 
number, Re; Prandtl number, Pr; and specific heat ratio, y. These parameters are 
defined by 

M = U,lc, Re = p,U,L,Ip, Pr = c,p/k, y = CJC, W-W) 

where p is the molecular viscosity, k is thermal conductivity, and c, and c, are the 
specific heats at constant pressure and volume. The reference speed of sound, c, is 
defmed by c2 = ygRT,. , where R is the gas constant. 

With the exception of the energy equation, the equations are written in the so-called 
conservation form. The foregoing assumptions are convenient but not essential; 
the treatment of alternate forms of the equations, arbitrary equation of state, and 
variable fluid properties is relatively straightforward. With the stated assumptions, 
the Navier-Stokes equations can be written for Cartesian coordinates (x, y, z) as 
follows: The continuity equation is 

ap/at = a(-pu)/h + a(-pv>/ay + a(-pw>/az. W 

The ,jth momentum equation is given by 

a(puj)/at = a(-puU,)/ax + a(-pvUj)/ay + a(-pwU,)/az - ap/aX, + Fj . (3b) 

The energy equation is 

a OPT 
at --ax ( -puT + &49+~(-pvT+i&~) 

+g(-PwT+& ;; ) + yty - 1) M2 [A Q, - P(V * U)]. (3c) 

In (3), U is the velocity vector with components Uj = u, v, w; X is the position vector 
with components X, = x, y, z; p is density; T is temperature; p is pressure; t is time, 
and A is the gradient operator. The force F due to viscous stress has components 
given by 

Fj = (1/Re)[V2U3 + ia@ * U)/iX,]. (4) 

The dissipation function, @, is given by 

(5) 
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The pressure can be eliminated as a dependent variable by means of the equation of 
state for a perfect gas, 

p = pT/yM2. (6) 

The continuity, momentum, and energy equations thus constitute a system of five 
equations in the dependent variables p, U, U, W, and T. The definition of total enthalpy E 
is 

E = T/(y - 1) M2 + q2/2 (7) 

where q2 = u2 + u2 + w2. In numerous problems of interest, it can be assumed that 
the total enthalpy is a constant E,, provided there is no heat addition. This assumption 
is reasonable for inviscid flow regions with or without shocks and for boundary layers 
on adiabatic walls provided the Prandtl number is unity. In this circumstance, (6) and 
(7) can be combined to produce an adiabatic equation of state, 

P = ~6% - q2/Ny - WY. 

If pressure is eliminated in the momentum equations by means of(S), then a solution 
of energy equation (3~) is unnecessary, and a significant reduction in computational 
effort is effected. The temperature field is then determined a posteriori from (7). 
This simplification, although convenient and available as an option, was not used for 
any of the calculations presented here for laminar flow. 

NUMERICAL METHOD 

Previous Work 

Although several methods based on implicit schemes have been developed for 
incompressible flows (e.g., [3], [4]), most previous methods for the compressible 
Navier-Stokes equations have employed explicit schemes. Nevertheless, a semi- 
implicit method has been developed by Harlow and Amsden [5] for use over the 
entire spectrum of Mach numbers from incompressible to hypersonic. However, the 
Harlow-Amsden method treats viscous terms explicitly and, unlike alternating- 
direction methods, requires the solution of multidimensional implicit difference 
equations, which tends to be time consuming. In an independent investigation, Baum 
and Ndefo [6] developed a two-dimensional implicit method which is patterned after 
the original Peaceman-Rachford [7] AD1 technique. Perhaps the most significant 
difference between the Baum-Ndefo and present methods is that the Baum-Ndefo 
method employs iterative techniques, solving nonlinear difference equations as a 
sequence of linear equation, whereas in the present method, the difference equations 
are linearized about the solution at the previous time step and solved without iteration. 
In principle, the solution of nonlinear difference equations is of course attractive, 
as this removes any limitations which might arise from the linearization process. 
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It is, however, a time-consuming process to solve the nonlinear difference equations, 
and as far as temporal accuracy is concerned, the additional computational effort 
required by the solution of nonlinear difference equations might be as well spent by 
reducing the time step and proceeding with a satisfactory linearization [8]. On the 
other hand, if a steady solution is the only objective, then temporal accuracy is of 
little concern, and a stable method requiring minimal computational effort per time 
step (the present objective) is attractive. The topic of nonlinear truncation errors is 
discussed further by McDonald and Briley [8]. 

The present numerical method was developed for the Navier-Stokes equations by 
Briley and McDonald [9] and for steady supersonic flows by McDonald and Briley [8]. 
Here the method is formalized for mixed parabolic-hyperbolic systems having the 
form of (l), and is applied to the Navier-Stokes equations. Recently, Beam and 
Warming [lo] have followed a similar approach and have specialized this same 
linearization procedure to equations in conservation-law form, with emphasis on the 
inviscid Euler equations. Beam and Warming employed a locally one-dimensional 
(LOD) scheme and compact spatial differencing techniques analogous to those 
discussed by Mitchell [ll, p. 51, 611, but in the special circumstances of the Euler 
equations. 

LINEARIZATION TECHNIQUE 

Background 

A number of techniques have been used for implicit solution of the following 
first-order nonlinear scalar equation in one dependent variable 4(x, t) 

Special cases of (9) include the conservation form if -F(4) = 1, and quasi-linear form 
if G(4) = 4. P revious implicit methods for (9) which employ nonlinear difference 
equations and also methods based on two-step predictor-corrector schemes are 
discussed by Ames [12, p. 821 and von Rosenberg [13, p. 561. One such method is to 
difference nonlinear terms directly at the implicit time level to obtain nonlinear 
implicit difference equations; these are then solved iteratively by a procedure such as 
Newton’s method. Although otherwise attractive, there may be difficulty with 
convergence in the iterative solution of the nonlinear difference equations, and some 
efficiency is sacr%ced by the need for iteration. An implicit predictor-corrector 
technique has been devised by Douglas and Jones [14] which is applicable to the 
quasi-linear case (G = 4) of (9). The first step of their procedure is to linearize the 
equation by evaluating the nonlinear coefficient as F(e) and to predict values of 
4 n+llB using either the backward difference or the Crank-Nicolson scheme. Values 
for fl+l are then computed in a similar manner using F(p+l/z) and the Crank- 
Nicolson scheme. Gourlay and Morris [15] have also proposed implicit predictor- 
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corrector techniques which can be applied to (9). In the conservative case (F = I), 
their technique is to define G(#) by the relation G(4) = $G(+) when such a definition 
exists, and to evaluate G(++l) using values for $ n+l computed by an explicit predictor 
scheme. With G thereby known at the implicit time level, the equation can be treated 
as linear, and corrected values of + n+l are computed by the Crank-Nicolson scheme. 

A technique is described here for deriving linear implicit difference approximations 
for nonlinear differential equations. The technique is based on an expansion of 
nonlinear implicit terms about the solution at the known time level, tn, and leads to a 
one-step, two-level scheme which, being linear in unknown (implicit) quantities, 
can be solved efficiently without iteration. This idea was applied by Richtmyer and 
Morton [16, p. 2031 to a scalar nonlinear diffusion equation. Here, the technique is 
developed for problems governed by 1 nonlinear equations in I dependent variables 
which are functions of time and space coordinates. Attention is restricted to nonlinear 
systems having the form of (1). 

The solution domain is discretized by grid points having equal spacings, dx, dy, 
and LIZ, in the x, y, and z directions, respectively, and an arbitrary time step, dt. 
Provisions for nonuniform grid spacing will be introduced subsequently. The 
subscripts i, j, k, and superscript n are grid point indices associated with x, y, z, and t, 
respectively, and thus r$& denotes #J(x~ , yj , z k , t”). It is assumed that the solution 
is known at the n level, t”, and is desired at the (n + 1) level, tn+l. At the risk of an 
occasional ambiguity, one or more of the subscripts is frequently omitted, so that 4 
is equivalent to +&lc . 

Linearized Dlyerence Scheme 

The linearization technique is a simple one which can be illustrated by application 
to the one-dimensional continuity equation. Using backward time differences, the 
continuity equation is expanded as 

P n+~-~n = _ a 
At ax cPuP+l 

= - $ [(p,” + (gg + 22,” At + O(At12] (10) 

(10) is time differenced to obtain 

P n+l- pn = _ a 
C ( p 

n+1- n 

At 
ax pw + 24” At p ) At + p” ( @+;; Un At 1 1 

- -- A&- (pn+lUn + pnun+l _ pnun) (11) 

which is linear and couples p VZ+I and un+l. Having given a simple illustration of the 
technique, attention is now devoted to systems of equations having the form of (1). 
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The linearized difference approximation is derived from the following implicit time- 
difference replacement 

(H”+l - H”)/df = f&q@“) + s”+l] + (I - p)[.qcp) + S”] (12) 

where, for example, Hpz+l = H(p+‘). The form of 9 and the spatial differencing are 
as yet unspecified. Here, a parameter /3 (0 < fl 6 1) has been introduced so as to 
permit a variable centering of the scheme in time. Equation (12) produces a backward 
difference formulation for p = 1 and a Crank-Nicolson formulation for fl = Q. 
Unconditional stability is anticipated for /3 > 4. 

The linearization is performed by a two-step process of expansion about the 
known time level tn and subsequent approximation of the quantity (a&at)% dt, 
which arises from chain rule differentiation, by (@+l - 4”). The result is 

Hn+l = H” + (aH/&$)n(p+l - p) + O(dt)2, UW 

s”+l = S” + (as/arp(rp+l - p) + O(Llt)2, W-9 

qp+y = .qcp) + (aB/acp(p+l - p) + O(dt)2. (13c) 

The matrices aH/thj and %/a$ are standard Jacobians whose elements are defined, 
for example, by (i3H/~~)),, = aH,/a$, . The operator elements of the matrix 89/a+ 
are similarly ordered, i.e., (a9/@),, = a.9Q/a$, ; however, the intended meaning 
of the operator elements requires some clarification. For the qth row, the operation 
wwwfityl+l - 49 is understood to mean that (a/at S*[d(x, y, z, t)]}” dt is 
computed and that all occurrences of (a#at)n arising from chain rule differentiation 
are replaced by (4:” - 4rW)/dt. 

After linearization as in (13) (12) becomes the linear implicit time-differenced 
scheme 

Although Hn+l is linearized to second order in (13a), the division by dt in (12) 
introduces an error term of order dt. A technique for maintaining formal second-order 
accuracy in the presence of nonlinear time derivatives is discussed by McDonald and 
Briley [8], however a three-level scheme results. Second-order temporal accuracy can 
also be obtained (for /3 = 3) by a change in dependent variable to 4 = H(4), provided 
this is convenient, since the nonlinear time derivative is then eliminated. The temporal 
accuracy is independent of the spatial accuracy. 

On examination, it can be seen that (14) is linear in the quantity (p+l - @) and 
that all other quantities are either known or evaluated at the n level. Computationally, 
it is convenient to solve (14) for (p+l - p) rather than p+l. This both simplifies (14) 
and reduces roundoff errors, since it is presumably better to compute a small O(dt) 
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change in an O(1) quantity than the quantity itself. To simplify the notation, a new 
dependent variable # defined by 

*f+-$ (15) 

is introduced, and thus ~,@+l = +n+l - @, and #” = 0. It is also convenient to 
rewrite (14) in the simplified form 

(A + At A?) p+l = At [9(p) + S”] (164 

where the following symbols have been introduced to simplify the notation 

It is noted that 9(#) is a linear transformation and thus 2(O) = 0. Furthermore, if 
g(4) is linear, then JZ(t,L) = --&~(zJ). 

Spatial differencing of (16a) is accomplished simply by replacing derivative operators 
such as a/ax, P/ax2 by corresponding finite-difference operators, D, , Dz2. Henceforth, 
it is assumed that 3 and 3 have been discretized in this manner, unless otherwise 
noted. 

Before proceeding, some general observations seem appropriate. The foregoing 
linearization technique assumes only that functions are Taylor expandable, an 
assumption already inherent in the use of a finite-difference method. The governing 
equations and boundary conditions are addressed directly as a system of coupled 
nonlinear equations which collectively determine the solution. The approach thus 
seems more natural than that of making ad hoc linearization and decoupling appro- 
ximations, as is often done in applying implicit schemes to coupled and/or nonlinear 
partial differential equations. With the present approach, it is not necessary to 
associate each governing equation and boundary condition with a particular dependent 
variable (e.g., to assume u is governed by the x momentum equation, p by continuity, 
etc.) and then to identify various “nonlinear coefficients” and “coupling terms” 
which must then be treated by lagging, predictor-corrector techniques, or iteration. 
The Taylor expansion procedure is analogous to that used in the generalized Newton- 
Raphson or quasi-linearization methods for iterative solution of nonlinear systems 
by expansion about a known current guess at the solution (e.g., [17]). However, 
the concept of expanding about the previous time level has apparently not been em- 
ployed to produce a noniterative implicit time-dependent scheme for coupled 
equations, wherein nonlinear terms are approximated to a level of accuracy commen- 
surate with that of the time differencing. The linearization technique also permits the 
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implicit treatment of coupled nonlinear boundary conditions, such as stagnation 
pressure and enthalpy at subsonic inlet boundaries, and in practice, this latter feature 
was found to be crucial to the stability of the overall method. 

APPLICATION OF ALTERNATING-DIRECTION TECHNIQUES 

Solution of (16a) is accomplished by application of an alternating-direction implicit 
(ADI) technique for parabolic-hyperbolic equations. The original ADI method was 
introduced by Peaceman and Rachford [7] and Douglas [ 181; however, the alternating- 
direction concept has since been expanded and generalized. A discussion of various 
alternating-direction techniques is given by Mitchell [ll] and Yanenko [19]. The 
present technique is simply an application of the very general procedure developed 
by Douglas and Gunn [I] for generating AD1 schemes as perturbations of fundamental 
implicit difference schemes such as the backward-difference or Crank-Nicolson 
schemes. 

For the present, it will be assumed that L@(+) contains derivatives of first and 
second order with respect to x, y, and z, but no mixed derivatives. In this case, 9 can 
be split into three operators, ~2~ , .5@U , ~2~ associated with the X, y, and z coordinates 
and each having the functional form ~2~ = g(#, a/%, a2/Z2) for a typical coordinate 
2. Equation (16a) then becomes 

[A + k(.%! + -Ep, + %)I p+l = 4pa! + gy + -@*Id” + PI. (17) 

Recalling that 2’(1,@) = 0, the Douglas-Gunn representation of (17)-can be written 
as the three-step solution procedure 

(A + At xl!) #* = 4Pz + gv + 9*) p + PI, (184 
(A + At LZT) I)** = AI/*, W) 

(A + dt c.5$) I,@+~ = A+**, (18~) 

where #* and #** are intermediate solutions. It will be shown subsequently that each 
of (18) can be written in narrow block-banded matrix form and solved by efficient 
block-elimination methods. If t,4* and #** are eliminated, (18) becomes 

(A + At 9%) A-l(A + dt L&) A-l(A + At %) 3L”+l 

= Llt[(.9&! + Bu + 9z) p + w (19) 

If the multiplication on the left-hand side of (19) is performed, it becomes apparent 
that (19) approximates (17) to order (dt)2. 

A major attraction of the Douglas-Gunn scheme is that the intermediate solutions 
1,4* and #** are consistent approximations to I/I n+1. Furthermore, for steady solutions, 
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i,@ = z,P = t/** = p+l= 0 independent of At. Thus, physical boundary conditions 
for I,P+~ can be used in the intermediate steps without a serious loss in accuracy and 
with no loss for steady solutions. In this respect, the Douglas-Gunn scheme appears 
to have an advantage over locally one-dimensional (LOD) or “splitting” schemes, 
and other schemes whose intermediate steps do not satisfy the consistency condition. 
The lack of consistency in the intermediate steps complicates the treatment of 
boundary conditions and, according to Yanenko [19, p. 331 does not permit the use of 
asymptotically large time steps. It is not clear that this advantage of the Douglas-Gunn 
scheme would always outweigh other benefits which might be derived from an 
alternative scheme. However, since the AD1 scheme can be viewed as an approximate 
technique for solving the fundamental difference scheme (16a), alternate ADI schemes 
can readily be used within the present formulation. 

It is worth noting that the operator 9 can be split into any number of components 
which need not be associated with a particular coordinate direction. As pointed out 
by Douglas and Gunn [l], the criterion for identifying suboperators is that the asso- 
ciated matrices be “easily solved” (i.e., narrow banded). Thus, mixed derivatives can 
be treated implicitly within the AD1 framework, although this would increase the 
number of intermediate steps and thereby complicate the solution procedure. Finally, 
only minor complications result if H, 9, and S are functions of the spatial coordinates 
and time, as well as 4. 

SOLUTION OF THE IMPLICIT DIFFERENCE EQUATIONS 

Second-Order Spatial Dl@erences 

Since each of (18) is implicit in only one coordinate direction, the solution procedure 
can be discussed with reference to a one-dimensional problem. For simplicity, it is 
sufficient to consider (18a) with 5@* , gz = 0. For the moment, attention is focused 
on the three-point difference formulas 

D& E [EL + (1 - a) A+]4/AZ = (&$/aQ + O[AS + (a - $) A%] (20a) 

D,“+ EG (A+AJ+/(A~E)~ = (+b/~~2)i + o(Az2), WW 

for a typical coordinate 2. Here, A-4 = $i - &, A++ = 4i+, - #Q , and a 
parameter (Y has been introduced (0 < 01 < 1) so as to permit continuous variation 
from backward to forward differences. The standard central difference formula is 
recovered for 01 = + and was used for all solutions reported here. 

As an example, suppose that the qth component of gz has the form 

where F and G are column vector functions having the same but an arbitrary number 
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of components; F denotes the transpose of F. The form of (21) permits governing 
equations having any number of first and second derivative terms. Then, 

It is now possible to describe the solution procedure for (18a) for the one- 
dimensional case with 9% given by (21) and difference formulas given by (20). Because 
of the spatial difference operators, D, and D,“, (18a) contains &El, &*, and #& ; 
consequently, the system of linear equations generated by writing (18a) at successive 
grid points xi can be written in block-tridiagonal form (simple tridiagonal for scalar 
equations, I = 1). The block-tridiagonal matrix structure emerges from rewriting (18a) 
as 

were a, b, c are square matrices and d is a column vector, each containing only n-level 
quantities. The qth component of d and qth row-components of a, b, c are given by 

When applied at successive grid points, (23) generates a block-tridiagonal system of 
equations for I/J* which, after appropriate treatment of boundary conditions, can be 
solved efficiently using standard block-elimination methods as discussed by Isaacson 
and Keller [20, p. 581. The solution procedure for (18b) and (18~) is analogous to 
that just described for (18a). It is worth noting that the spatial difference parameter OL 
can be varied with i or even term by term. For example, an “upwind difference” 
formula can be obtained if 01 is chosen as 1 or -1 depending on the sign of the 
elements of Fl . 
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Fourth-Order Spatial Dlrerences 

Fourth-order spatial accuracy can be obtained by using the standard five-point 
difference formulas in place of (20) 

Da4 = (l/24%)(1 - Qd+d-)(A+ + d-)+ = (a#/aZ)i + O@S), (254 
Ds2+ = (l/(dZ))3(1 - &Ll+d-)(d+~t-)$ = (a2#/laZ2)i + O(dS). Wb) 

In this instance, the block-tridiagonal structure of (23) expands to block pentadiagonal. 
Block-pentadiagonal systems are easily solved using banded Gaussian block 
elimination. Recently, there has been revived interest (e.g., Orszag and Israeli [211) 
in the following fourth-order compact difference formulas involving only three grid 
points 

To implement (26) within the AD1 framework, the difference equations are multiplied 
by the denominator of (26a) or (26b) at the appropriate step in the solution procedure 
(cf. WI, P11). 

COMPUTING REQUIREMENTS 

Various block-elimination algorithms can be devised for solution of equations with 
block-banded matrix structures (cf. [20]). Such algorithms can be derived using 
variants of Gaussian elimination for a banded matrix, but with the square submatrix 
elements of the banded matrix processed using matrix algebra. Thus, operations 
involving matrix subelements are not assumed to commute, and division by a matrix 
subelement is accomplished by computing the inverse and multiplying. Following this 
procedure, the authors have developed algorithms for both block-tridiagonal and 
block-pentadiagonal systems arising from the respective second- and fourth-order 
difference formulas, (20) and (25). Each algorithm requires only one inverse per grid 
point. A standard operation count (scalar multiplications and divisions) has been 
performed for systems with L x L block elements and N diagonal block elements, 
i.e., L coupled equations along N grid points. The block&diagonal scheme requires 
(3N - 2)(L3 + L2) operations, the same as the matrix factorization scheme of 
Isaacson and Keller [20]; the block-pentadiagonal scheme requires (7N - 10) L3 + 
(5N - 6) L2 operations, which is only slightly more than twice the block&diagonal 
number. Assuming there are N grid points in each coordinate direction, the total 
number of operations for a single time step is obtained from the operation count for 
solution of one block-banded system by multiplying by 2N and 3N2 for two and 
three dimensions, respectively. 
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Based on computed results for a model problem, Orszag and Israeli [21, p. 2841 
have estimated that fourth-order schemes can achieve results in the 5 % accuracy 
range with approximately half the number of grid points in each direction, as com- 
pared with second-order schemes. If this rough estimate is valid, it follows from the 
foregoing operation counts that for one-dimensional problems, use of the fourth- 
order scheme is roughly equivalent in terms of accuracy and computational cost to 
using the second-order scheme with twice as many grid points. In two and three 
dimensions, however, the second-order scheme would require four and eight times as 
many grid points, respectively, to obtain accuracy comparable to fourth-order 
schemes, and thus the fourth-order scheme would be worth the factor of two in 
computational effort per grid point. 

For the particular case of the Navier-Stokes Eq. (3) with p eliminated using (6), 
it is possible to reduce the computational effort substantially by taking advantage of 
the special nature of the coupling during each AD1 sweep. In this case, it is only 
necessary to solve one block-banded system with L = 3, as well as two simple banded 
systems (L = 1). This can be seen by careful examination of (3). During the first 
step of the AD1 procedure, only derivatives with respect to x and t from (3) appear 
in the implicit difference equations. In the continuity, x momentum, and energy 
equations, these implicitly treated terms contain p, U, and T, but not v and W; therefore, 
the difference equations from these three equations can be solved for p*, u*, and T* 
during the first AD1 step by solving a block-banded system with L = 3. Having 
obtained values for p*, u*, and T* in this manner, the difference equations for the y 
and z momentum equations can then be solved independently for v* and w*; since 
the y and z momentum equations are uncoupled with respect to U* and w* during 
this ADI step, the latter computation only requires the solution of two simple banded 
systems (L = 1). A similar situation exists for the remaining two steps of the AD1 
procedure, except that during the second step ( y derivatives treated implicitly), the 
difference equations from the continuity, y momentum, and energy equations are 
solved as coupled equations for p**, a**, and T**, and during the third step (z 
derivatives treated implicitly), the difference equations from the continuity, z 
momentum, and energy equations are solved as coupled equations for pn+l, wn+l, and 
T”+l 

For tridiagonal systems, the operation count is reduced from order 450 N for one 
L = 5 system to order 118 N for one L = 3 and two L = 1 systems. For penta- 
diagonal systems, these estimates are 1000 N and 258 N, respectively. Consequently, 
the arrangement leading to three coupled and two uncoupled equations is quite 
worthwhile. For comparison, it is noted that in the case of the Navier-Stokes Eq. (3), 
merely evaluating the right-hand side of (18a), which would be a minimum requirement 
for a one-step explicit scheme, requires 302 N operations for a three-point difference 
formula and 488 N operations for a five-point formula. 

In view of the many factors involved, it is difficult to evaluate precisely or with any 
generality the overall computational efficiency of the present method relative to 
various other methods. However, the foregoing operational counts show that the 
effort expended to solve the implicit difference equations by block elimination is 

581/24/4-4 
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not excessive compared with that necessary simply to evaluate the differenced 
Navier-Stokes equations, let alone the various other bookkeeping tasks present in 
most large-scale computer programs for fluid dynamics problems. In the solutions 
presented here, the solution of the tridiagonal and block-tridiagonal systems using 
double precision arithmetic required only about one third to one half of the total 
computer time per time step. 

APPLICATION TO FLOW IN A STRAIGHT DUCT 

Problem Formulation and Boundary Conditions 

To explore the stability properties and general capabilities of the present method, 
some test calculations were made for three-dimensional laminar subsonic flow in the 
entrance region of a straight duct with rectangular cross section. The flow geometry 
and coordinate system are shown in Fig. 1. The flow structure consists of boundary 

FIG. 1. Duct geometry and coordinate system. 

layers on the duct walls and an inviscid core flow which accelerates due to the blockage 
effect of the boundary layers. At some downstream distance determined by the 
Reynolds number, the boundary layers grow to fill the duct and the flow becomes 
fully viscous. At this point, incompressible flows are fully developed or independent 
of axial distance. Compressible flows, however, undergo continuous acceleration due 
to frictional effects until at some axial distance the mean Mach number is unity and 
the flow becomes choked. Depending on the inlet Mach and Reynolds number, the 
flow may become choked either before or after it becomes fully viscous. For the 
present calculations, the duct length is chosen so that the flow at the exit is neither 
choked nor fully viscous. 

Application of the present method is straightforward once H, S, and 9 are identified, 
and for the present calculations, these quantities are given in the Appendix. In 
applying the numerical method, the dissipation term, @, defined by (5), and the 
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viscous terms in (4) containing V * U were treated explicitly by evaluation at the n level. 
This is accomplished by setting fl = 0 in (16b). Although @ could be treated implicitly 
and linearized, this would unnecessarily complicate the difference equations. The 
viscous terms involving V . U contain mixed derivatives whose treatment by AD1 
methods is somewhat awkward, as mentioned previously. For the solutions presented 
here and other test cases computed while developing the method, the explicit treatment 
of the aforementioned viscous and dissipation terms had no observable adverse affect 
on stability. All solutions presented here were made using three-point centered 
difference formulas (i.e., LY = s in (20)), and since steady solutions were the primary 
objective, the backward time difference form (/I = 1) was employed throughout. 
In each case, the reference length, L, , was taken as the duct width, and values of 0.73 
and 1.4 were used for Pr and y, respectively. 

Boundary and initial conditions are required to complete the problem formulation. 
It is assumed that the duct is fed from a large stagnant reservoir. It is reasonable to 
assume that the flow upstream of the inlet plane is inviscid and adiabatic, and thus 
constant stagnation temperature T,, and pressure PO are specified at the inlet plane. 
These quantities can be written in nondimensional form as 

To = T + ((y - 1)/z) M2w2 Wa) 

P,, = ( 1 /rM2) pT( T/ To)y’(l-y). CW 

The ZJ and u velocity components are small and were neglected in the definition of T,, . 
Including the u and z) components in the definition of T,, would couple all five 
governing equations at the upstream boundary during the z-direction step of the 
ADI procedure. Unless u and u were treated explicitly, this coupling would preclude, 
during this ADI step, the use of the more efficient solution technique previously 
described, in which only three equations are coupled. Implicit boundary conditions 
are obtained by writing (27) at the (n + 1) level and linearizing by the same procedure 
employed for the governing equations at interior points. The velocity field at the inlet 
plane depends on conditions surrounding the inlet, and thus velocity boundary 
conditions must be modeled. The relation DZ2w”+l = 0 was used at points adjacent 
to the upstream boundary. This boundary condition is equivalent to a linear extra- 
polation of wn+l on the upstream boundary from values at the two adjacent interior 
points (on a line in the z direction), and will be referred to subsequently as implicit 
linear extrapolation. This boundary condition is’compatible with the velocity behavior 
observed experimentally both in the boundary layers and inviscid core region. As the 
remaining upstream boundary conditions, the normal derivatives of @+l and ~++l 
are set equal to zero using three-point, second-order, one-sided difference approxi- 
mations. This is somewhat arbitrary, but reasonable. 

At the downstream boundary, implicit linear extrapolation relations were used for 
p+1 ) l.P+1, vn+l, and w”+l, and the static pressure P, , defined by 

P, = UlyM’) PT (274 



388 BRILEY AND MCDONALD 

is assumed constant. These conditions are once again reasonable if the duct is regarded 
as a portion of a longer duct, and also for a duct with an unobstructed exit into a large 
constant-pressure reservoir. The specified downstream conditions were specified on the walls of the duct, and adiabatic conditions 

were imposed by setting normal derivatives of temperature to zero using three-point, 
one-sided difference formulas. In addition, the wall density was determined implicitly 
using a three-point, one-sided difference approximation of the continuity equation. 
Since the flow is symmetric about the horizontal and vertical planes passing through 
the duct centerline, solutions were computed for one quadrant of the duct, and 
symmetry conditions were imposed on these planes of symmetry. 

STABILITY TESTS 

Two sequences of solutions were computed for Re = 60 with a 6 x 6 x 6 grid 
and using different time steps, to explore the stability properties of the method. To 
provide a frame of reference, stability numbers NcFL and N, are defined as the ratio 
of the actual time step d t to the maximum allowable time step as determined by the 
CFL and viscous stability limits, respectively, for one-dimensional uniform flow at the 
reference velocity and Mach number. These stability numbers are defined by 

N CFL = (dt/dz)(l + (l/M)), (284 

N, = (2/Re)(d t/(dz)2). (2W 

- 1.5 
4 “CFL Nu I 

a - 1.1 0.1 
b - 2.2 0.2 L-l d c - - 21.6 10.6 1.1 2.2 
e - 43.2 4.4 

NUMBER OF TIME STEPS 

FIG. 2. Transient behavior of velocity time derivative at downstream centerline for different 
time steps; M = 0.44, Re = 60. 
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NUMBER OF TIME STEPS 

FIG. 3. Transient behavior of velocity time derivative at downstream centerline for different 
time steps; M = 0.044, Re = 60. 
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FIG. 4. Transient behavior of velocity time derivative at downstream centerline for different 
time steps; - M = 0.44, Re = 60. 
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FIG. 5. Transient behavior of velocity time derivative at downstream centerline for different 
time steps; M = 0.044, Re = 60. 
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Typically, conditionally stable methods would require NcFL , N,, < 1 for stability. 
Multidimensional forms of (28) are more restrictive; however, splitting techniques 
can be employed (cf. [22]) to recover the one-dimensional forms. In actual compu- 
tations with a conditionally stable method, the stability limits would vary from point 
to point with the local velocity, Mach number, and mesh size; however, (28) provides 
convenient reference quantities. 

The initial conditions used for the stability tests are those appropriate for uniform 
flow in the z direction at the reference velocity and with the specified stagnation 
pressure and temperature. At t = 0, the no-slip conditions were applied and the 
downstream static pressure was impulsively reduced to P, . The duct geometry has 
x1 = y, = 1, z1 = 0.5. 

The downstream centerline value of (W %+l - w”)/d t is a sensitive indicator of 
steady-state conditions and is shown in Fig. 2 for a sequence of solutions with 
M = 0.44. It can be seen that the method gave stable solutions for test cases in the 
range NcFL < 43.2, N, < 4.4, and that steady conditions were reached with signifi- 
cantly fewer time steps for higher NcpL . A second sequence of solutions was com- 
puted for M = 0.044, and similar results were obtained (Fig. 3) for NcFL < 1471, 
N, < 20.6. 

The transient accuracy of the M = 0.44 test cases can be assessed in Fig. 4, although 
as mentioned earlier, transient accuracy was not an objective of these calculations. 
The solutions in Fig. 4 are not independent of the time step (NcFL), and thus there is 
temporal truncation error in these solutions. However, curves a and b display far less 
dependence on NcFL than the remaining curves, and thus it appears that convergence 
is beginning for N cFL < 2.2. Steady-state conditions are reached in a nondimensional 
time on the order of four for curves a and b. Clearly, the temporal truncation error is 
much greater for curves c and d (10.8 < N cFL ,< 21.6), although these latter cases 
reached steady state in fewer time steps (Fig. 2). Similar plots of the transient solution 
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FIG. 6. Effect of mesh size on computed axial velocity profiles at x/x, = 0.5; M = 0.44, Re =:60. 
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for the M = 0.044 test cases are given in Fig. 5. It should be emphasized that the 
degree of transient accuracy indicated in Figs. 4 and 5 is not a generalindication of the 
accuracy achievable at a given NcFL or N, with the present method, since these 
stability tests involve first-order backward time differences, a very coarse mesh, and 
impulsive starting conditions. 

The effect of mesh size on computed solutions was examined empirically for the 
M = 0.44 test case. Axial velocity profiles are compared in Fig. 6 for two solutions 
having 6 x 6 x 6 and 11 x 11 x 11 grids in the computed quadrant of the duct; 
the two solutions are in satisfactory agreement. The error is larger at the duct entrance, 
where the inlet conditions are somewhat severe for the mesh spacing used. In Fig. 7, 
centerline velocity and pressure are shown for three solutions having 6,11, and 21 mesh 

OC 
0 0.25 0.5 

NONDIMENSIONAL AXIAL DISTANCE, z 

FIG. 7. Effect of axial mesh size on computed centerline velocity and pressure; M = 0.44, 
Re = 60. 

FIG. 8. Selected streamlines for duct flow With moving walls; M = 0.44, Re = 60. 
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points in the z direction. This comparison also reflects a reasonable infleunce of mesh 
size on the solutions. 

An additional solution was computed for M = 0.44, Re = 60 but with a large 
secondary flow caused by moving two parallel duct walls in a direction perpendicular 
to the axial flow direction; the wall speed is about 25 % of the average axial velocity. 
Since the flow is symmetric about a horizontal plane midway between the moving walls 
only the lower half of the flow field was computed, and computer-produced drawings 
of selected streamlines for this solution are shown in Fig. 8. No data or other 
theoretical studies are available for comparison in this instance and the computed 
solutions are presented largely as a demonstration of stability in the presence of large’ 
secondary flows. 

HIGH REYNOLDS NUMBER SOLUTIONS 

Nonuniform-Grid Transformation 

The accuracy of solutions computed with a given number of grid points can often 
be improved by using a nonuniform grid spacing to ensure that grid points are 
closely spaced in regions where the solution varies rapidly and widely spaced else- 
where. An analytical coordinate transformation has been devised by Roberts [23] 
which is an effective means of introducing a nonuniform grid when the steep gradients 
occur near the computational boundaries. If N grid points are to be used in the 
range 0 < x < 1, and if steep gradients are anticipated in a region of thickness (T 
near x = 0, then Roberts’ transformation q(x) is given by 

rl(x) = iv + W - 1) log ( ; ; z ; ; )/log (s) (29) 

where a2 = l/(1 - u). The use of equally-spaced points in the transformed coordinate 
77 provides resolution of both the overall region 0 < x < 1 and the subregion 
0 < x < U. Transformation (29) was employed in high Reynolds number solutions 
to provide increased resolution near the duct entrance and in boundary layers on the 
duct walls. Values of 0.1, 0.1, and 0.25 were used as (T for the x, y, and z coordinates, 
respectively. 

Art$3al Dissipation 

In computing solutions for high Re, it was necessary to add a form of artificial 
viscosity or dissipation for the axial flow direction. Artificial dissipation in some form 
is often useful in practical calculations to stabilize the overall method when boundary 
conditions are treated inaccurately, when coarse mesh spacing is used, or in the 
presence of discontinuities. (von Mises [24] has shown that certain ,&continuities in 
solutions of the Navier-Stokes equations are possible despite the presence of physical 
viscosity and heat conduction terms.) The need for artificial dissipation arisesin certain 
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step with NcpL up to 380 and, N, up to 12. Computed axial velocity profiles at the duct 
entrance and exit are shown in Fig. 9 for this case. The subscript 1 denotes conditions 
at the duct entrance. The axial variation of pressure ratio and Mach number is given 
in Fig. 10. As a check on the solution, two additional pressure curves are shown. 
One curve represents the pressure ratio from one-dimensional theory for adiabatic, 
frictional, constant-area flow of a perfect gas [27]. Using this theory, the pressure 
ratio between two points can be evaluated if the Mach numbers are known; the 
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FIG. 10. 

NONDIMENSIONAL AXIAL DISTANCE, z 

Axial variation of pressure ratio and Mach number; M = 0.3, Re = 600. 

average Mach number, MaVs (averaged over the cross section) from the Navier-Stokes 
solution was used for this evaluation. The second curve assumes isentropic flow and 
constant stagnation pressure along the centerline of the duct and was evaluated from 
the isentropic relations for a perfect gas using the computed centerline Mach number, 
MO. The general agreement of pressure ratio distributions seen in Fig 10 is an 
indication of internal consistency in the computed solution. Since the average inlet 
Mach number is only 0.27, and since the axial variation in density is only about 8 %, 
compressibility effects should be relatively minor for this solution The computed 
pressure drop was therefore compared with the experimental measurements of 
Beavers et al. [28] for incompressible flow and found to be in reasonable agreement, 
considering the difference in M. The results of this comparison are shown in Fig. 11. 

In assessing the high Reynolds number solution, the question arises as to whether 
the artificial viscosity destroys the accuracy by changing the effective Reynolds 
number of a viscous calculation. Here, it should be emphasized that the artificial 
viscosity was used only for the axial coordinate direction, where viscous terms are 
generally unimportant; second-order accuracy was rigorously maintained for the 
two transverse directions, for which viscous stresses are large The magnitude of the 
artificial viscosity terms in the computed solutions was examined a posteriori and 
compared with other terms in the equations. It was found that the artificial viscosity 
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NONDIMENSIONAL AXIAL DISTANCE, z 

FIG. 11. Comparison of computed and measured axial pressure drop; M = 0.3, Re = 600. 

terms were no greater than about 2 % of the largest term in each equation, except at 
grid points very near the edges of the duct walls at the entrance The specification of 
constant stagnation pressure and temperature at the entrance along with the no-slip 
conditions on the walls produces very large gradients in this region, and the artificial 
viscosity terms were as large as 15 to 20 % there. It is believed, however, that the 
accuracy was not seriously degraded by the artificial viscosity except, of course, 
locally near the entrance edges of the walls. As a final check on the solutions, the mass 
flow rate was computed by integration of w over the cross section at each axial 
location in the duct and was found to be constant to within 0.4 %. 

The UNIVAC 1108 run time for the solutions presented here was about 
3.5 x lo-* minutes per grid point per time step, which includes the use of auxiliary 
storage devices Solution of the implicit difference equations was performed in double 
precision. Convergence to a steady solution required from 20 to 100 time steps, 
depending on how the time step was chosen. 

APPENDIX 

Terms in governing equation (3) are arranged for application of the numerical 

method as 

If= = (P, pu, PU, PW, pn (Al) 

- a(pu 

9z(9) = 
-alpu2 + pzyyw)/ax + a2(24/Re)/aX2 
-a(puo)/ax + a2(u/Re)/ax2 
-a(puttg/ax + a2(W/Re)/ax2 

642) 

-a(pdf)/ax + (1 - r) pT au/ax + a2(yT/Re Pr)/ax2, 
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-abwY 
-abwY + a2(uiRe)/w 

all = --a(pv2 + pT/ywyaY + aYu/Re)/ay2 
-a(pvw)/ay + a2(w/Re>/ay2 
-acpvT)iaY + (1 - 7) pmlay + a2(yT/Re Pr)/ay2, i 

(A3) 

-a(puw)/az + a2(u/Re)/az2 

-a(pvwj/az + a2(2+te)/az2 
-aa(pw2 + pT/yiw)/az + a2(w/Re)/az2 

-a(pwq/aZ + (1 - r) pT aw/az + a2(yT/Re Pr)/az2, 

A(4) 

1 qv * U) 1 qv * U) 1 qv . U) ST= (o,~~,---,-- 
3 Re ay 3 Re az 

, y(y - 1) M2@/Re 
) 
. (A5) 
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